Baxter’s Inequality for Finite Predictor Coefficients of Multivariate Long-memory Stationary Processes (running Title: Baxter’s Inequality)

نویسندگان

  • AKIHIKO INOUE
  • YUKIO KASAHARA
  • MOHSEN POURAHMADI
چکیده

For a multivariate stationary process, we develop explicit representations for the finite predictor coefficient matrices, the finite prediction error covariance matrices and the partial autocorrelation function (PACF) in terms of the Fourier coefficients of its phase function in the spectral domain. The derivation is based on a novel alternating projection technique and the use of the forward and backward innovations corresponding to predictions based on the infinite past and future, respectively. We show that such representations are ideal for studying the rates of convergence of the finite predictor coefficients, prediction error covariances, and the PACF as well as for proving a multivariate version of Baxter’s inequality for a multivariate FARIMA process with a common fractional differencing order for all components of the process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Processes with Long-range Dependence

Abstract. We introduce a class of Gaussian processes with stationary increments which exhibit long-range dependence. The class includes fractional Brownian motion with Hurst parameter H > 1/2 as a typical example. We establish infinite and finite past prediction formulas for the processes in which the predictor coefficients are given explicitly in terms of the MA(∞) and AR(∞) coefficients. We a...

متن کامل

Baxter’s Inequality for Triangular Arrays

A central problem in time series analysis is prediction of a future observation. The theory of optimal linear prediction has been well understood since the seminal work of A. Kolmogorov and N. Wiener during World War II. A simplifying assumption is to assume that one-step-ahead prediction is carried out based on observing the infinite past of the time series. In practice, however, only a finite...

متن کامل

Baxter’s Inequality and Sieve Bootstrap for Random Fields

The concept of the autoregressive (AR) sieve bootstrap is investigated for the case of spatial processes in Z. This procedure fits AR models of increasing order to the given data and, via resampling of the residuals, generates bootstrap replicates of the sample. The paper explores the range of validity of this resampling procedure and provides a general check criterion which allows to decide wh...

متن کامل

Explicit Representation of Finite Predictor Coefficients and Its Applications

We consider the finite-past predictor coefficients of stationary time series, and establish an explicit representation for them, in terms of the MA and AR coefficients. The proof is based on the alternate applications of projection operators associated with the infinite past and the infinite future. Applying the result to long memory processes, we give the rate of convergence of the finite pred...

متن کامل

ar X iv : m at h / 04 05 05 1 v 2 [ m at h . ST ] 1 M ar 2 00 5 EXPLICIT REPRESENTATION OF FINITE PREDICTOR COEFFICIENTS AND ITS APPLICATIONS

Abstract. We consider the finite-past predictor coefficients of stationary time series, and establish an explicit representation for them, in terms of the MA and AR coefficients. The proof is based on the alternate applications of projection operators associated with the infinite past and the infinite future. Applying the result to long memory processes, we give the rate of convergence of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016